Forage Yields in Turkey Hill Wilderness in East Texas for
White-tailed Deer

Brian P. Oswald*
Kenneth W. Farrish
Bret Gentzler
Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State
University, 419 E. College St., Nacogdoches, TX 75962

ABSTRACT

Wilderness areas are often considered quality areas where natural processes occur
without human activity. It is often assumed that these unmanaged areas will provide
and support quality wildlife habitat. The objective of this study was to evaluate the
forage production and stocking potential of an unmanaged wilderness area in east
Texas. Four different community types were evaluated for forage yield, forage
availability, and browse utilization for white-tailed deer. Results show that although
a wide range of forage yields were measured in the spring, summer forage yield did
not differ among the various communities. Availability also differed between
community types, but utilization within each community appears to be lower than
what could be supported.

KEYWORDS: Browse, forage preference, utilization, stocking

INTRODUCTION

Historically, forests in the southeastern United States developed with and were
impacted or modified by fire and other natural processes such as herbivory from white-
tailed deer (*Odocoileus virginianus*) and woodland bison (*Bison bison* var. *athabascae*)
(Walker 1991). Many natural landscape processes, including fire, have diminished due to
forest fragmentation and human population expansion (Harris 1984) and are limited on the
relatively small-scale landscapes that are occupied by wilderness areas in the eastern U.S.
The area currently designated Turkey Hill Wilderness, located within the Angelina
National Forest in east Texas, was purchased in 1935 from private landowners and
established in 1984 according to Public Law 98-574 (Texas Wilderness Act) in compliance
with Public Law 88-577 (Federal Wilderness Act of 1965). Southern forests generally
develop into dense stands in the absence of management or disturbance, which shade out
forage and browse, reducing or preventing forage and/or biomass production.

There have been numerous studies on diets and preferred foods of white-tailed
deer, with dietary preferences varying seasonally and geographically, dependent upon
White-tailed deer are classified as concentrate browsers (Veteto and Hart 1971, Veteto and
Hart 1974; Kroll 1991), and although herbaceous plant species and succulent new growth
of a variety of plants are preferred, availability is limited seasonally. Browse, leaves and
twigs are the mainstay of deer diets (Halls 1973; Kroll 1991), possibly providing greater

* Corresponding author: boswald@sfasu.edu
than 89% of the year-round diet, although Dillard et al. (2006) recorded less than 50% browse in the Cross Timber region of Texas. Hard and soft mast comprise more than 1% of deer diets and as much as 10% of their fall diet. Deer tend to shift browsing species for several reasons. As deer mature, they shift from succulent forms to browse. They also change to browse with seasonal change in late summer and early fall, due to a decrease of nutritional value of forages.

Estimating carrying capacity for white-tailed deer may involve determining forage quantity divided by the yearlong dietary need of the animal (French et al. 1956; Blair 1960; Byrd 1980; Halls and Boyd 1982), although utilizing nutritional quality models are also often used (Fulbright and Ortega 2013). Deer respond to habitat quality or, as Dasmann (1964) defined, “tolerance density.” A high quality habitat leads to high deer reproducitivity, often characterized by twin or even triplet fawns (Halls 1984); a poor quality habitat will often result in a decreased fawn crop (Kroll 1991).

The objective of this study was to evaluate forage species composition, forage yield and deer preference within the Turkey Hill Wilderness area, and to determine which of the sampled community types may best provide forage for deer.

MATERIAL AND METHODS

Study Area. This study was conducted in the Turkey Hill Wilderness, located within the Angelina National Forest in East Texas) in 2001. Following LeGrande (1998), plots were classified within four community groups: mixed hardwood (mixed hardwood, southern scrub oak, Quercus alba, Q. alba-Q. pagoda, Q. michauxii-Q. pagoda), pine-hardwood (Pinus echinata-Q. spp., P. taeda-mixed hardwood, P. taeda-Liquidambar styraciflua), pine (P. echinata, P. palustris-P. taeda, P. taeda, P. taeda-P. echinata), or no overstory. Separation into mixed pine-hardwood and hardwood stands were based on topographic features. Sixty-nine randomly located 0.04 ha plots were established following Zhang et al. (1999). Plot corners were marked with steel rebar and tagged for identification.

Between June and September within each plot, all trees (single woody stems greater than 4.5 m total height) were identified to species and measured for total height (m), diameter at breast height (dbh in cm), height to live crown (m), crown class, and crown width (m, from drip line to drip line perpendicular directions). Also, a 0.01 ha subplot was nested in one corner of each plot, and all midstory shrubs and saplings were identified to species and measured for height and diameter (Bonham 1989).

In addition, two 1 m² plots were established in two corners in each plot. All plants rooted within the square were identified to species, utilization estimated by ocular examination, new growth clipped and placed in a paper bag, oven-dried (60 °C until constant weight, about 24 h), and weighed to the nearest 0.01g. Same species in each plot were added together and plot data for all species were expanded for total production per ha (Hill 1995).

Within the 0.01 ha subplot, all vegetation with stems measurable at dbh (midstory shrubs and saplings, vines, and overstory tree limbs), and having current vegetative growth within 2 m of the ground were sampled using a .025 m² frame (Hill 1995). The frame was placed on the plant side first approached. All new growth within the frame was clipped, oven-dried, and weighed. One corner was sampled in spring/early summer and the other sampled in late summer/fall. Forage availability and production per species were calculated on a per hectare basis (Hill 1995). Following Lay (1967) and Thill (1983), plant species were identified and preference levels were assigned. Plant and animal common and
Deer Stocking Estimation. One plot from each community type was selected and four browse survey transects were laid out in the cardinal directions. Five subplots (0.0004 ha) were established along each transect and utilization of current or past season browse growth was classified as 0%, 5%, 30%, or 70%. This represents approximate midpoints of four utilization percentage classes: none, trace-10, 10-50, and 50+ (Lay 1967). A winter browse survey, following Lay (1967), was conducted in late January through mid-February. The method included browse inventory (species identification) and estimated (ocular) degree of utilization, palatability classification (1st, 2nd, or 3rd choice browse), and calculation and interpretation of utilization indices. A utilization mean was calculated for each plant species occurring on 20% or more of the plots. Utilization percentages were calculated by totaling the utilization percentages (by percent classes) of each species, then dividing by the number of times the species occurs. Common utilization means, for each of the three choice classifications, were combined into a mean index. This produced a ratio for browse utilization, which was used to determine the existing deer stocking rate following Lay (1967).

Statistical Analyses. Importance values (Estrada-Bustillo and Fountain 1995; LeGrande 1998) were calculated for individual plant species as:

\[IV = NP \times AP \]

(1)

Where IV = Importance Value, NP = Number of plants of a species, and AP = Animal preference (Lay 1967; Thill 1983)

Total forage production (kg ha\(^{-1}\)) was calculated for spring and summer. Using importance values, communities were evaluated for potential usage for spring and summer. Potential forage within and among communities was determined by expanding plot estimates to per ha estimates. ANOVA and Duncan’s multiple range test, using SAS\(^*\) were used to test for significance of total forage production, preferred animal forage production and importance values among communities. T-tests were used to test for significance between seasons.

Deer forage was subdivided into three preference levels (Lay 1967) for known forages and a fourth class (other) for forages that were either unknown or had no references to deer utilization. Numbers of plants and deer utilization for each preference level were calculated per community. ANOVA and Duncan’s then were used to test for significance of number of plants and utilization for spring and summer for each preference level among communities. Significance level for all analyses was set at the 0.1 \(\alpha\)-level.

RESULTS

Spring mean forage yield for the four different community groups ranged from 31.7 to 214.1 kg ha\(^{-1}\), and summer mean forage ranged from 39.2 kg ha\(^{-1}\) in pine communities to 211.1 kg ha\(^{-1}\) in no overstory stands. Mean forage production for both spring and summer were highly variable among vegetative community groups, but
significant differences were not found between community groups for the summer (Table 1).

Table 1. White-tailed Deer Forage Yield (kg ha\(^{-1}\)) per community group. Variables with same letter in a column are not significantly different.

<table>
<thead>
<tr>
<th>Communities</th>
<th>Spring Forage Yield</th>
<th>Summer Forage Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Hardwood</td>
<td>211.8A</td>
<td>143.9</td>
</tr>
<tr>
<td>Pine-Hardwood</td>
<td>31.6B</td>
<td>43.4</td>
</tr>
<tr>
<td>Pine</td>
<td>52.18B</td>
<td>39.2</td>
</tr>
<tr>
<td>No Overstory</td>
<td>214.11A</td>
<td>211.1</td>
</tr>
<tr>
<td>P-value</td>
<td>0.0042</td>
<td>0.3090</td>
</tr>
</tbody>
</table>

Significant differences in plant density for second, third and other preference levels were however found between community groups in the spring (Table 2). Second choice plant densities ranged from 11,000 stems ha\(^{-1}\) in no overstory to 153,885 stems ha\(^{-1}\) in the mixed hardwoods. Low spring season utilization of first choice plants occurred only in the no overstory community group at 4%. The greatest utilization occurred in the mixed hardwood community where third choice and other plants were utilized at 8% and 6%, respectively, of available forage.

First, third and other forage preference classes significantly decreased statistically in number of plants per ha from spring to summer. However, for two community groups (pine-hardwood and no overstory), second choice plant numbers significantly increased (Table 3).

Based on browse utilization, deer stocking across Turkey Hill Wilderness was classified as light. However, stocking rates among the community groups varied from light to moderate. Two community groups were light to moderately stocked; the others were lightly stocked (Table 4).
Table 2. Availability\(^1\) of white-tailed deer preferred spring and summer forage (stems ha\(^{-1}\)) using Lay's (1967) three choice levels in number of plants per hectare. Variables with same letter in a column are not significantly different. SE = Standard Error.

<table>
<thead>
<tr>
<th>Community</th>
<th>1st Choice</th>
<th>2nd Choice</th>
<th>3rd Choice</th>
<th>Other Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SE</td>
<td>Mean</td>
<td>SE</td>
</tr>
<tr>
<td>Spring(^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed-Hardwood</td>
<td>29085</td>
<td>1676</td>
<td>153885A</td>
<td>7790</td>
</tr>
<tr>
<td>Pine-Hardwood</td>
<td>23155</td>
<td>2581</td>
<td>38309B</td>
<td>3789</td>
</tr>
<tr>
<td>Pine</td>
<td>24620</td>
<td>1478</td>
<td>87510AB</td>
<td>5683</td>
</tr>
<tr>
<td>No Overstory Summer(^3)</td>
<td>52200</td>
<td>18562</td>
<td>11000B</td>
<td>88</td>
</tr>
<tr>
<td>Summer(^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed-Hardwood</td>
<td>27020</td>
<td>1424</td>
<td>89735</td>
<td>5007</td>
</tr>
<tr>
<td>Pine-Hardwood</td>
<td>19600</td>
<td>2675</td>
<td>58009</td>
<td>8343</td>
</tr>
<tr>
<td>Pine</td>
<td>16960</td>
<td>1170</td>
<td>51525</td>
<td>2340</td>
</tr>
<tr>
<td>No Overstory</td>
<td>57100</td>
<td>19108</td>
<td>24200</td>
<td>1798</td>
</tr>
</tbody>
</table>

\(^1\)Usable, obtainable, and accessible by the animal (Morrison et al. 1992).

\(^2\)Spring P-values: 1\(^{st}\) choice 0.5451, 2\(^{nd}\) choice 0.0433, 3\(^{rd}\) choice 0.0775, other 0.0553.

\(^3\)Summer P-values: 1\(^{st}\) choice 0.1432, 2\(^{nd}\) choice 0.3473, 3\(^{rd}\) choice 0.6254, other 0.0123.
Table 3. P-values for t-test differences between spring and summer number of plants per preference level.

<table>
<thead>
<tr>
<th>Community</th>
<th>1st Choice</th>
<th>Browse Preference Level</th>
<th>2nd Choice</th>
<th>3rd Choice</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Hardwood</td>
<td>0.8114</td>
<td>0.0250</td>
<td>0.0350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pine-Hardwood</td>
<td>0.7856</td>
<td>0.0547</td>
<td>0.2770</td>
<td>0.3240</td>
<td></td>
</tr>
<tr>
<td>Pine</td>
<td>0.0347</td>
<td>0.2097</td>
<td>0.2604</td>
<td>0.0727</td>
<td></td>
</tr>
<tr>
<td>No Overstory</td>
<td>0.9200</td>
<td>0.0481</td>
<td>0.2412</td>
<td>0.7403</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Browse utilization ratios (from Lay 1967) for four community types in Turkey Hill Wilderness.

<table>
<thead>
<tr>
<th>Community</th>
<th>Preference Classification</th>
<th>Grass</th>
<th>Pine</th>
<th>Stocking Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Texas</td>
<td>Lay (1967) Standard for White-tailed Deer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed Hardwood</td>
<td>3.7</td>
<td>11.9</td>
<td>4.5</td>
<td>10.8</td>
</tr>
<tr>
<td>Pine-Hardwood</td>
<td>5.7</td>
<td>15.9</td>
<td>3.5</td>
<td>5.4</td>
</tr>
<tr>
<td>Pine</td>
<td>3.6</td>
<td>6.1</td>
<td>5.2</td>
<td>6.2</td>
</tr>
<tr>
<td>No Overstory</td>
<td>2.9</td>
<td>17.4</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>Mean</td>
<td>4.0</td>
<td>12.8</td>
<td>5.1</td>
<td>7.0</td>
</tr>
</tbody>
</table>

CONCLUSIONS AND DISCUSSION

There were significant differences in forage biomass for deer preferred forage in spring among community types. Overall biomass production generally follows Thill's (1983) results, with greatest forage production occurring in open communities and less production under forest canopies. There were no deer habitat preference differences among community types.

Forage Production. ANOVA analyses of forage availability, production and preferences proved significant for some variables, including total forage production in spring, importance values in spring, and preferred forage production in spring. Though Duncan's MRT failed to separate significant means in most cases, greatest total spring forage yield occurred in no overstory followed by mixed hardwoods. The no overstory community group had the greatest spring and summer preferred forage yield. The mixed hardwood and no overstory community groups generally had higher total forage production. These sites had open canopies, thus increasing forage production. Furthermore, the forest floor of pine communities generally was heavily covered in litter, effectively reducing herbaceous plant production. The classic assumption is pine stands cannot support deer, which may be the case in some pine plantations, although Jones et al. (2009) reported adequate deer numbers
in intensively managed loblolly pine plantations in Mississippi. Our results indicate the mixed hardwood community is equal to or superior to open stands in terms of producing preferred deer forage in spring.

Mixed hardwoods had the greatest deer importance values for spring and this may be reflected by utilization levels. However, the high importance values may be supported by density of second choice browse species. This is followed by similarities between the no overstory and pine community groups. The mixed hardwood community group maintained the highest importance value for summer, followed by the pine and mixed pine-hardwood communities. The mixed hardwood stands often are more open and have less litter on the forest floor, leading to greater capability of producing herbaceous forage for deer.

Recurring droughts in the last few decades in Texas may have reduced herbaceous diversity, specifically annual herbs. Thus, summer deer importance values and preferred forage production became similar for each community. Furthermore, the entire Wilderness Area has experienced little disturbance since 1984, except beetle outbreaks in some areas. Successional trends expressed when limited disturbances occur can produce similar understories in each community, again resulting in a fairly uniform vegetative composition (Smalley 1986; Hinkle 1989; Franklin et al. 1993; McNab 1996).

Deer Stocking. Stocking at the research location generally was light, based on browse survey data. Numerous browse species in all three preference classifications were available and generally were under-utilized (<50% browsed), indicating deer stocking levels could be increased. Only six deer were observed (three does, two fawns and one unknown), throughout the entire sampling periods. Also, there was very little visible utilization of first-choice species such as green briar (*Smilax* spp.), Alabama supplejack (*Berchemia scandens*), also a first-choice species, never appeared to be utilized within the forest; however, it was heavily browsed where found along an abandoned, improved-rock and caliche road within the area. It may have been made more palatable from the increased pH by calcium leaching from road materials (Heady 1964).

Deer numbers may have been low due to the highly accessible nature of this forested area. Hunters can enter the forest from roads bordering three sides. It is relatively small in size and it is heavily hunted during legal deer season and anecdotally may be subject to poaching. Two of the communities having light-to-moderate stocking are near the wilderness center, while the other light-to-moderate and the moderately-stocked community are near the wilderness area’s exterior. However, this side is adjacent to and separated from part of the Angelina National Forest by a Forest Service road. The other communities are scattered throughout the wilderness near boundaries with the National Forest, bordered by woods roads and Texas State Hwy 147 (south and west boundaries), with private property bordering the entire northern wilderness boundary and FM 705 bordering the eastern wilderness boundary.

Although adequate forage is available within this unmanaged forested area, stocking rates were much lower than anticipated or what could be supported. It is possible that the lack of disturbance processes, such as fire, may be resulting in reduced habitat diversity across the various community types found within the Turkey Hill Wilderness Area, thus negatively influencing white-tailed deer populations within Turkey Hill. Since there is little evidence that the area is unable to support more white-tailed deer, other possible reasons for the low population density should be investigated.
REFERENCES

Walker LC. 1991. The southern forest. Univ. of Texas Press, Austin, TX; p. 322.