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ABSTRACT

Recent air pollution legislation affects stationary sources such as cotton gins.
This study estimated the increase in gin plant costs that resulted from
compliance with various levels of air pollution control and the associated impact
on returns. Because investment in air pollution control differs by gin plant size
and level of pollution control, five plant sizes were examined in combination
with control systems that reduce per bale emissions from 4 Ib per bale to 2.24,
1.60 and 1.06 Ib per bale. Cost increases and rates of return were affected by
gin plant size, level of control technology, plant volume, and method of harvest
(picked or stripped).

The Clean Air Act of 1963 was the first major federal involvement in air pollution
regulation in the US. This act was subsequently amended in 1967, 1970, 1977, and
1990 and, in general, increased federal involvement in air pollution regulation. The
Clean Air Act of 1970 required that emission standards be established for stationary
sources of air pollution. These standards were to be established on an industry-by-
industry basis and were to consider the cost of air pollution control. The established
standards were to represent the "best available control technology" (BACT) available
to the industry. The Federal Clean Air Act (FCAA) amendments of 1990
represented a further strengthening of the Clean Air Act and ended more than a
decade of Congressional stalemate over air pollution regulations in the US (Smith,
1992).  The 1990 legislation represents an important change in air pollution
regulation, in particular, as it affects stationary sources such as cotton gins.

Air pollution regulations are implemented at the state level; the implementing
agency in Texas is the Texas Natural Resources Conservation Commission
(TNRCC), known as the Texas Air Control Board (TACB) prior to September 1993,
Cotton gins in Texas are regulated under the nuisance rule (General Rules, Section
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101.4), which states:

No person shall discharge from any source whatsoever one or more air
contaminants or combination thereof, in such concentration and of such duration
as are or may tend to be injurious to or to adversely affect health or welfare,
animal life, vegetation, or property, or as to interfere with the normal use and
enjoyment of animal life, vegetation, or property.

About 160 cotton gin plants in Texas (40%) have not been grandfathered or
permitted by the TNRCC. Those gins in isolated locations with favorable
community acceptance and no past nuisance compliance violation history will be
required to invest in a minimum level of control which is defined as baseline "best
available control technology” (BACT). Gin plants which require more control than
BACT (the minimum level of control) must propose additional controls to the
TNRCC. The complement of control equipment finally required of a particular plant
is the result of negotiations between the TNRCC and gin plant management.

OBJECTIVES

The TNRCC has some flexibility and discretion in administering the clean air
statutes by considering the trade-offs between economic and environmental impacts.
In particular, the regulation states that a plant will use the best available control
technology with consideration being given to its technical practicability and economic
reasonableness (TACB, 1992). The term "economic reasonableness” is undefined
in law or regulations.

The cost of upgrading selected gin plants with an air pollution control system may
be substantial and in some cases may place financial burden on the firm. In view
of these concerns, the objectives of this study were to (1) estimate the impact on gin
plant costs that result from compliance with various levels of air pollution control
and (2) estimate the economic impact on gin plant firms that result from investments
in required air pollution control devices. The analysis was designed to evaluate
economic impacts that result from incorporating technology that increasingly lowers
a plant’s emission rate.

METHODS

Investments in air pollution control were expected to differ by gin plant size and
level of pollution control. In this study, five plant size categories were established
based on bale per hour (bph) capacity. These include: < 10 bph; 11 to 15 bph; 16
to 25 bph; 26 to 34 bph; and > 35 bph. In addition, three control systems were
included in the analysis and represented technology that reduced total per bale
emissions from the current 4 Ib per bale to 2.24, 1.60, and 1.06 b per bale,
respectively. Costs were estimated for each plant size category, which reflected
current control technology (4 1b per bale). Based on current gin revenue schedules,
rates of return were estimated and subsequently compared with returns from plants,
which reflected upgrading to the three levels of air control (emissions rate of 2.24,
1.60, and 1.06 Ib per bale). The calculated rates of return were compared with a
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predetermined critical or required rate of return to identify plant sizes whose
financial viability were threatened by required investments in air pollution control.
The required rate of return is that which is thought necessary to attract capital into
the cotton ginning industry. Investment in air pollution control is expected to reduce
profitability (returns) of gin plant operations as a result of increases in fixed and
variable costs and, in some cases, reduce returns to levels that threaten a firm’s
economic viability.

Gin plant costs were estimated with a computerized economic-engineering model
(GINMODEL) which was initially developed by the Economic Research Service of
the USDA and more recently updated and maintained in the Department of
Agricultural Engineering at Texas A&M University (Shaw et al., 1977; USDA,
1977). An input data file was developed for each plant size category that reflected
existing plants and their air pollution control technology (4 Ib per bale emission
rate). Then for each plant size, the investment in air pollution control and additional
connected horsepower associated with the three air pollution control systems were
estimated and the new cost relationships generated. Rates of return were generated
for each plant size category at alternative volumes. The model was validated with
cost data provided by COBANK, the Bank for Cooperatives in Austin, Texas. In
general, GINMODEL costs approximated the actual cost data and therefore were
judged adequate to carry out study objectives (Childers et al.,1994).

RESULTS

Air Pollution Control Systems and Effect on Costs

The three air pollution control systems examined in this study were BBACT
(Baseline Best Available Control Technology), BACTD1 (Best Available Control
Technology Design 1), and BACTD2 (Best Available Control Technology Design
2). BBACT, BACTDI, and BACTD2 were designed to reduce emissions from the
current 4 1b per bale to 2.24, 1.60, and 1.06 Ib per bale, respectively. Controls
used to reduce emissions to 2.24 1b per bale (BBACT), as described by the TNRCC,
include high efficiency cyclones (1D-3D or 2D-2D) on all centrifugal fan exhausts
and small mesh screens on all lint cleaner condenser drums and battery condensers.
Technologies used to reduce the emission rates to 1.60 1b per bale (BACTDI) and
1.06 1b per bale (BACTD2) were estimated by Parnell and Yarlagadda in the
Department of Agricultural Engineering at Texas A&M University (Yarlagadda et
al., 1994; USDA, 1993; Mihalski et al., 1993). BACTDI includes 2D-2D or 1D-
3D cyclones on all centrifugal fan exhausts, the replacement of axial fans with
centrifugal fans, and the replacement of condenser drums with 2D-2D cyclones.
BACTD?2 includes a pre-separator/1D-3D cyclone system on all fan exhausts. The
capital investment associated with each air pollution control system was estimated
using data and procedures prescribed by Cooper and Alley. Unit costs in
combination with estimated airflow rates (cubic feet per minute) were used to
estimate total capital investment for the BBACT, BACTDI1, and BACTD?2 control
systems in gin plants processing picked and stripped cotton. For plants processing
picked cotton, estimates of capital investment ranged from $56,000 for the smallest
plant (< 10 bph) upgrading to a BBACT system to $333,000 for the largest plant
size (= 35 bph) upgrading to a BACTD2 system (Table 1). Similarly, for plants
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processing stripped cotton, estimates of capital investment ranged from $64,000 for
the smallest plant (< 10 bph) upgrading to a BBACT system to $366,000 for the
largest plant size (= 35 bph) upgrading to a BACTD2 system (Table 2).

Table 1. Total capital investment for BBACT, BACTD1 and BACTD?2, picked
cotton.

Gin Size Capacity' BBACT BACTD1 BACTD2
bph $

<10 56,000 76,000 107,000

11-15 65,000 91,000 129,000

16-25 95,000 135,000 197,000

26-34 136,000 195,000 289,000

>35 156,000 225,000 333,000

tRepresentative plants in the five gin size categories are 10, 12.5, 20, 30 and 35
bales per hour, respectively.

Table 2. Total capital investment for BBACT, BACTD1 and BACTD?2, stripped
cotton.

Gin Size Capacity' BBACT BACTD1 BACTD2
bph $

<10 64,000 80,000 113,000

11-15 77,000 98,000 139,000

16-25 112,000 148,000 216,000

26-34 158,000 216,000 316,000

>35 182,000 249,000 366,000

tRepresentative plants in the five gin size categories are 10, 12.5, 20, 30 and 35
bales per hour, respectively.

Introduction of air pollution controls affected depreciation, interest, property
insurance, property tax, repair, and electrical expenses. Total depreciation and
interest expense were determined with the standard present value annuity formula
(GINMODEL) based on expected years of life and the representative average interest
rate for capital investments (9.8%) in the Fall of 1993. Property insurance was
determined by multiplying capital investment in the air pollution control systems by
the co-insurance percentage and the insurance rate, while taxes were estimated by
multiplying investment by the property tax rate. Electrical charges were based on
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rate schedules of utility companies in Texas.

To provide insight regarding the increase in costs that result from investment in
air pollution equipment, the additional per bale costs associated with upgrading a <
10 bph plant to BBACT was calculated for a plant processing 8,000 bales of stripped
cotton (Table 3). The upgrade involved an investment of $64,000 and an increase
in connected electrical horsepower from 536 to 722. Per bale cost increased by
$2.74 per bale. About 80% of the increase in costs was accounted for by electricity
(39%), interest on borrowed capital (27%), and depreciation (15%) (Table 3).

Table 3. Estimated increases in per bale costs that result from upgrading small plant
(<10 BPH) to BBACT stripped cotton’.

Cost Component Pre-Control Post-Control Marginal Increase
$/bale
Depreciation 1.22 1.63 0.41
Capital Interest 1.71 2.45 0.74
Working Interest 0.70 0.72 0.02
Property Insurance 0.14 0.21 0.07
Property Taxes 0.55 0.78 0.23
Repairs 0.33 0.53 0.20
Electricity 3.39 4.46 1.07
Sub-total 8.04 10.78 2.74
Other 40.58 40.58 0.00
Total 48.62 51.36 2.74

tAll per bale costs are calculated at an annual volume of 8,000 bales.

In general, the introduction of air pollution control had the expected effect on gin
plant costs (Tables 4 and 5). First, per bale gin plant costs increased with the
introduction of air pollution controls and with the adoption of control systems which
increasingly lowered per bale emissions. For example, a plant in the 16 to 25 bph
size category processing 16,000 bales of picked cotton would experience a cost
increase of $1.46 per bale by introducing BBACT (emission rate of 2.24 Ib per
bale); however, by introducing BACTDI (emission rate of 1.60 1b per bale) and
BACTD?2 (emission rate of 1.06 1b per bale), respective cost increases of $2.53 per
bale and $3.80 per bale were expected (Table 4). Second, for a particular plant size,
the increase in per bale cost associated with the introduction of air pollution control
was reduced as plant volume increased. For example, the 16 to 25 bph plant
processing 10,000 bales of picked cotton would expect costs to increase $2.16 per
bale with the introduction of BBACT, but at an output of 20,000 bales, per bale
costs were projected to increase a more modest $1.28 per bale. Third, for a
particular control system, large plants operating at a specified utilization level
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experienced more modest increases in per bale costs than smaller plants operating
at the same utilization level. As an example, the > 35 bph plant operating at 80%
utilization (40,000 bales) would expect costs to increase $3.01 per bale if BACTD2
were introduced when processing picked cotton whereas the 26 to 34 bph plant and
the 16 to 25 bph plant operating at the 80% utilization level would expect costs to
increase $3.65 per bale and $3.80 per bale, respectively (Table 4). Finally, the
increase in per bale costs for a plant processing stripped cotton were approximately
$0.50 to $3.00 per bale higher than for plants processing picked cotton (Tables
4 and 5). This was the result of greater investment in air pollution control
equipment and the need for additional connected horsepower in plants processing
stripped cotton.

Air Pollution Control Systems and Effect on Returns

Rates of return after taxes were calculated for each gin plant size category under
pre-control (current), and the BBACT, BACTD1, and BACTD2 air pollution control
systems. Rates of return were based on projected costs, federal corporate taxes
(Internal Revenue Service, 1992), and ginning revenue information taken from a
USDA survey of gins (Glade et al., 1993) and data provided by COBANK in Austin,
Texas. These data showed gins equipped with a universal-density (UD) press had
an estimated revenue of $59.25 and $63.25 per bale when processing picked and
stripped cotton, respectively. Since the <10 bph gin plant did not typically have a
UD press, they were assumed to have an estimated revenue of $51.45 and $55.45
per bale when processing picked and stripped cotton, respectively. The Dun and
Bradstreet publication, Industry Norms and Key Business Ratios, showed the simple
rate of return on cotton ginning industry assets to average 14.7%; accordingly, this
value was selected as the required rate of return. The required rate of return
(14.7%) was based on a five year average (1988-1992) and included an annual
sample of about 190 cotton ginning enterprises. Investments in air pollution control,
which forced returns on gin plant investment below the required rate (14.7%), were
judged to jeopardize the long-run economic viability of the cotton ginning enterprise.

Expected outcomes were shown by the rate of return analyses (Tables 6 and 7).
First, introducing air pollution control decreased a gin plant’s rate of return on
investment, and, in general, those controls which increasingly lowered the emission
rate tended to lower rates of return. For example, a plant in the 16 to 25 bph
category processing 18,800 bales of picked cotton under pre-control conditions
(emission rate of 4 b per bale) experienced a rate of return on investment of
15.36%, but when upgraded to BBACT (emissions rate of 2.24 Ib per bale), this
plant’s return on investment declined to 13.18%. When upgraded to BACTDI1
(emissions rate of 1.6 Ib per bale) and BACTD?2 (emissions rate of 1.06 Ib per bale),
the returns declined to 12.12 and 10.76 %, respectively (Table 6). Second, regardless
of the control technology, a gin plant earned a higher rate of return at higher volume
levels. As an example, a gin in the 16 to 25 bph capacity range processing 10,000
bales of picked cotton experienced a rate of return on investment of 2.99% under
pre-control conditions, whereas at 18,800 bales the return increased to 15.36%.
Third, large plants tended to experience higher rates of return than smaller plants
when compared at specified utilization levels. As an example, a plant in the >35
bph category operating at 80% of capacity (40,000 bales) under BBACT generated
a return of 13.64 %, whereas plants in the 26 to 34 and the 16 to 25 bph categories
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under comparable conditions experienced returns of 12.47 and 10.74 %, respectively
(Table 6). In addition, under analogous conditions, the rates of return for plants
" processing picked cotton were slightly higher than returns for plants processing
stripped cotton (Tables 6 and 7).

When the two largest plant sizes (26 to 34 and > 35 bph) were operating at 100%
capacity and processing either picked or stripped cotton, they generated returns in
excess of the rate required (14.7%) to upgrade to an emission level of 1.06 1b per
bale (BACTD2). But as shown by information in Table 6, no other plant size
generated adequate returns to upgrade to this low emission rate. At peak volume
(100% utilization), the rate of return was adequate to upgrade the 16 to 25 bph plant
to an emission rate of 1.60 1b per bale (BACTD1) when processing picked cotton
and to upgrade to an emission rate of 2.24 1b per bale (BBACT) when processing
stripped cotton. Returns were insufficient for the < 10 bph plants and the 11 to 15
bph plants to add air pollution controls. When plant utilization declined to 90% and
the plant was processing picked cotton, the > 35 bph plant generated returns that
were adequate to upgrade to an emission rate of 1.06 Ib per bale (BACTD2) while
returns for the 26 to 34 bph plant would permit upgrading to an emission level of
2.24 1b per bale (BBACT) (Table 6). However, when processing stripped cotton and
operating at 90% utilization, the > 35 bph plant generated returns that allowed
upgrading to an emission rate of only 1.60 Ib per bale (BACTD1), whereas returns
for the 26 to 34 bph plant would permit upgrading to an emissions rate of 2.24 1b
to bale (BBACT) (Table 7).

SUMMARY AND CONCLUSIONS

Analysis regarding gin plant costs showed (1) per bale costs increased with
introduction of air pollution controls, and controls which increasingly lowered per
bale emission rates increased per unit processing costs; (2) for a particular gin plant
size, the increase in per bale cost associated with introduction of air pollution control
was reduced as plant volume increased; and (3) for a particular air pollution control
system, large gin plants operating at a particular utilization level experienced more
modest increases in per bale costs than smaller plants operating at similar utilization
levels.

In general, the rates of return were inversely related to per bale plant costs. In
particular, (1) introducing air pollution controls decreased a plant’s rate of return on
investment, and rates of return decreased as controls introduced increasingly lowered
emission rates; (2) regardless of the air pollution control system, a gin plant earned
a higher rate of return at higher volume levels; and (3) large plants tended to
experience higher rates of return than smaller plants when compared at specified
utilization levels.

The following observations were made regarding the ability of Texas gin plants
to invest in air pollution controls:

(1)  Neither the < 10 bph nor the 11 to 15 bph plants had returns which permit
investment in air pollution controls when processing picked or stripped
cotton.

(2) The 16 to 25 bph plant, when processing picked cotton and operating at
100% utilization, had returns which permit investment in BACTD1 (1.60
Ib per bale emission rate). However, when processing stripped cotton,
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returns permitted investment in only BBACT (2.24 Ib per bale emission
rate) for the 16 to 25 bph plant. Upgrading was not feasible when the 16-
25 bph plant operated at less than the 100% utilization level.

(3)  The 26 to 34 bph plant, processing picked or stripped cotton at 100%
utilization, had returns that permitted investment in BACTD2 (1.06 Ib per
bale emission rate). At 90% utilization, plants processing picked or
stripped cotton upgraded to only BBACT (2.24 1b per bale emission rate).
No investment in air pollution control was permitted when utilization levels
fell below 90%.

(4)  In the largest plant size category (= 35 bph), plants processing picked or
stripped cotton and operating at 100% of capacity had returns which
permitted upgrading to BACTD?2 (1.06 Ib per bale emission rate), whereas
at 90% utilization, plants processing picked cotton upgraded to BACTD2
(1.06 1b per bale emission rate). But when processing stripped cotton,
returns allowed upgrading to only BACTD1 (1.60 1b per bale emission
rate). No investment in air pollution control was warranted when utilization
levels were below 90%.

In conclusion, gin plant’s rate of return on investment was unfavorably affected
by the introduction of air pollution controls. Many Texas plants operate at
comparatively low utilization levels and, as such, careful attention must be given to
a plant’s historic variability in processing levels when prescribing air pollution
controls since their economic viability is sensitive to these investments.

This study had several shortcomings which should be noted. First, it was assumed
that gin revenue schedules were unchanged with investments in air pollution
controls. If ginning charges increased as a result of the higher cost, then the
calculated rates of return were underestimated. Second, in the long run, new
innovations may lower air pollution control costs and create uses for the removed
pollutants. In which case, the unfavorable effects on the cotton ginning industry
may be overstated by this study.
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